Recognition of Digital Images of the Human Face at Ultra Low Resolution Via Illumination Spaces
نویسندگان
چکیده
Recent work has established that digital images of a human face, collected under various illumination conditions, contain discriminatory information that can be used in classification. In this paper we demonstrate that sufficient discriminatory information persists at ultralow resolution to enable a computer to recognize specific human faces in settings beyond human capabilities. For instance, we utilized the Haar wavelet to modify a collection of images to emulate pictures from a 25pixel camera. From these modified images, a low-resolution illumination space was constructed for each individual in the CMU-PIE database. Each illumination space was then interpreted as a point on a Grassmann manifold. Classification that exploited the geometry on this manifold yielded error-free classification rates for this data set. This suggests the general utility of a low-resolution illumination camera for set-based image recognition problems.
منابع مشابه
Diagnostic Accuracy of Digitized Images Using Different Resolution Settings of Digital Camera in Detection of Proximal Caries
Objective: When none of digital systems and scanners is accessible and it is essential to have digitized images of conventional radiographs, digital cameras can be used. The Aim of this study was to investigate whether digital images obtained by different resolutions of a digital camera are matched to the original radiographs in evaluation of caries. Methods: In this diagnostic accuracy in v...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملIllumination Face Spaces Are Idiosyncratic
Illumination spaces capture how the appearances of human faces vary under changing illumination. This work models illumination spaces as points on a Grassmann manifold and uses distance measures on this manifold to show that every person in the CMU-PIE and Yale data sets has a unique and identifying illumination space. This suggests that variations under changes in illumination can be exploited...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007